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Summary

Multi-state stochastic models are useful tools for studying complex dynamics such as chronic diseases.
Semi-Markov models explicitly define distributions of waiting times, giving an extension of continuous
time and homogeneous Markov models based implicitly on exponential distributions. This paper devel-
ops a parametric model adapted to complex medical processes. (i) We introduced a hazard function of
waiting times with a U or inverse U shape. (ii) These distributions were specifically selected for each
transition. (iii) The vector of covariates was also selected for each transition. We applied this method to
the evolution of HIV infected patients. We used a sample of 1244 patients followed up at the hospital
in Nice, France.

Key words: Multi-state model; Semi-Markov process; Generalized Weibull distribution; Ha-
zard function; HIV; longitudinal analysis.

1 Introduction

Markov models are widely used in medicine, particularly in the study of chronic diseases, extending
classical survival models (Cox, 1972) to the analysis of multi-state processes. Indeed, the progression
of a disease cannot be summarized by two inevitablestates. In cancerology (e.g. Kay, 1986), the
dynamic can be defined through various states as life without disease, appearance of symptoms, me-
tastasis and eventually death. This type of method has also been applied recently with success for
HIV (Human Immunodeficiency Virus) by Alioum et al. (1998), Mauskopf (2000) or Jackson et al.
(2003). Likewise for asthma, we can cite Boudemaghe and Daures (2000), Combescure et al. (2003)
or Saint-Pierre et al. (2003).

However, in many of these applications, Markov chains are assumed to be homogeneous when the
evolution of the process is independent from the time spent in the state (memoryless). In our clinical
problem, this constraint is far too restrictive. Semi-Markov processes can be considered as an exten-
sion of ordinary Markov processes with discrete states and continuous time, because waiting time
distributions are explicit.

This paper develops a semi-Markov model adapted to medical problematics. Its main originality
consists in the introduction of a generalized Weibull distribution as defined by Mudholkar et al.
(1996) or by Bagdonavicius and Nikulin (2002), offering a more global parametric method than those
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frequently used as Perez-Ocon and Ruiz-Castro (1999) or Satten and Sternberg (1999). Indeed, it
gives a U or inverse U shape of the hazard function. We also defined a transition-specific strategy for
modeling, in which distributions of waiting times and vectors of covariates can change between transi-
tions. This model is parsimonious.

Section 2 develops the method by defining the semi-Markov process, the possible parametric distri-
butions, and incorporates covariates and a maximum likelihood estimation. Section 3 applies the meth-
od to the follow-up study of people infected with HIV. Section 4 concludes the paper.

2 Modeling Semi-Markov Processes

2.1 The transition-specific semi-Markov model

Let E ¼ f1; 2; . . . ; rg a finite state space. Consider the random processes ðT ;XÞ ¼ fðTn;XnÞ : n � 0g,
in which 0 ¼ T0 < T1 < . . . < Tn are the consecutive times of entrance to the states
X0; X1; . . . ;Xn 2 E, with Xpþ1 6¼ Xp; 8p � 0 and Xp not persistent. n represents the number of transi-
tions. The sequences X ¼ fXn; n � 0g form an embedded homogeneous Markov chain. The probabil-
ities of jumping from i to j, associated with this chain, can be written as:

Pij ¼ PðXnþ1 ¼ j jXn ¼ iÞ : ð1Þ

If state i is not persistent, then Pij � 0 for i 6¼ j and Pij ¼ 0 for i ¼ j. Otherwise, if state i is persistent,
then Pij ¼ 0 for i 6¼ j and Pij ¼ 1 for i ¼ j. In the following developments, we will suppose that state i
is transient. As we can see, the Markov chain does not deal with the duration of states. The waiting
times are defined explicitly. These processes ðT ;XÞ are called semi-Markovian, if the distribution of
waiting times ðTnþ1 � TnÞ satisfies:

PðTnþ1 � Tn � x; Xnþ1 ¼ j jX0; T0; X1; . . . ;Xn; TnÞ ¼ PðTnþ1 � Tn � x; Xnþ1 ¼ j jXnÞ :
The density probability function, of the waiting time in state i before passing to state j, is given by:

fijðx; qijÞ ¼ lim
h! 0þ

Pðx < Tnþ1 � Tn < xþ h jXnþ1 ¼ j; Xn ¼ iÞ
h

ð2Þ

in which qij is the parameter vector of the density probability function fijð Þ. The distribution and the
value of parameters can vary between transitions. This method is more parsimonious, than the one in
which only parameters can fluctuate (e.g. Perez-Ocon and Ruiz-Castro, 1999). To simplify notations,
we will write fijðxÞ in the place of fijðx; qijÞ. As usual in survival analysis, we deduce from fijðxÞ the
distribution function, the corresponding survival function and hazard function, respectively FijðxÞ,
SijðxÞ and lijðxÞ:

lijðxÞ ¼ lim
h! 0þ

Pðx < Tnþ1 � Tn < xþ h j Tnþ1 � Tn � x; Xnþ1 ¼ j; Xn ¼ iÞ
h

: ð3Þ

The marginal density probability function is deduced from the Eqs. (1) and (3):

fi:ðxÞ ¼
P
j 6¼ i

PijfijðxÞ : ð4Þ

By definition, the hazard function of the semi-Markovian process corresponds to the probability of
jumping towards state j, given that the process occupies state i for a duration x:

aijðxÞ ¼ lim
h! 0

P½x � Tnþ1 � Tn < xþ h; Xnþ1 ¼ j j Tnþ1 � Tn � x; Xn ¼ i�
h

¼ PijfijðxÞ
Si:ðxÞ

with

i 6¼ j

i; j 2 E

aiiðxÞ ¼ �
P
j 6¼ i

aijðxÞ

8>>><
>>>: ð5Þ
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2.2 Distribution of waiting times

We based our strategy for modeling on three different distributions. By increasing complexity:
� Exponential distribution EðsijÞ – The hazard function is constant, without memory. In this parti-

cular case, we found a homogeneous Markov model. The hazard function of the waiting time is

given by lijðxÞ ¼
1

sij
8x � 0; 8sij > 0.

� Weibull distribution Wðsij , nijÞ – The hazard function is defined as lijðxÞ ¼ nij
1

sij

� �nij

xnij�1 8x � 0;

8nij > 0 et 8sij > 0. For nij equal to 1, we find the formulation of the exponential distribution.
� Generalized Weibull distribution WG ðsij, nij, qijÞ – We chose a hazard function, able to fit a U

or inverse U shape: lijðxÞ ¼
1

qij
1þ x

sij

� �nij
 ! 1

qij
� 1

nij

sij

x
sij

� �nij � 1

8x � 0; 8nij > 0; 8sij > 0 and

qij > 0. If we fix qij at 1, we found exactly the same Weibull formulation. Therefore, this method
generalizes the Semi-Markov model based on Weibull distribution.

These distributions have the advantage of being nested. Thus, the Likelihood Ratio Statistic (LRS)
can be used to evaluate the relevance of a larger number of parameters.

2.3 Incorporation of covariates

To take covariates into account in the model, we used the assumption of risk proportionality. The
additional assumption was that covariates act on the waiting time distributions. Indirectly, from (5),
their effects are reflected on the hazard functions of the semi-Markov process. Let
zij ¼ ðz1

ij; z2
ij; . . . ; z

nij

ij Þ, the vector of nij covariates, specific to the transition i! j. This transition-speci-
fic method allows certain factors to influence certain transitions, but not all of them. Therefore, the
number of parameters to estimate (e.g. sex on the transition 1! 2) decreases, and the total number of
different factors (e.g. sex, age, etc.) increases. The hazard function with covariates is defined by:

lijðx; zijÞ ¼ l0; ijðxÞ hðzijÞ

in which hðzijÞ is any function of covariates and l0; ijðxÞ is the baseline hazard function of the transi-
tion i! j. Parallel to the treatment of Markov processes by Andersen et al. (1991), the model is
semiproportional, in that the proportionality of hazards is assumed within each i! j transition but
does not hold between. To obtain a strictly positive hazard function, we chose:

hðzÞ ¼ exp ðbT
ij zijÞ ð6Þ

in which bij ¼ ðb
1
ij; b2

ij; . . . ; b
nij

ij Þ is the vector of nij regression parameters associated with zij. An inter-
pretation as relative risk (RR) can be made from the hazard function of waiting times. Conditioning
on the future state is thus necessary from (3). The impact of covariates on the semi-Markovian hazard
function is more complex and only interpretable graphically.

2.4 Parameter estimations and likelihood methods

Suppose a sample is constituted by n subjects, denoted by h ðh ¼ 1; 2; . . . ; nÞ. The h-th subject moves
mh � 1 times into different states at times Th; 1 < Th; 2 < . . . < Th;mh�1. At these times, he occupies the
state Xh

1 ; Xh
2 ; . . . ;Xh

mh�1, with Xh
p 6¼ Xh

pþ1 8p � 0. At the last time of the follow-up, Th;mh , the h-th
individual can move again, or be censored. The Likelihood can therefore be written as the product of
all of these contributions:

L ¼
Q
h

Qmh

r¼1
fPXh

r�1;X
h
r
fXh

r�1;X
h
r
ðTh; r � Th; r�1; zXh

r�1;X
h
r
Þgdh; r fSXh

r�1 :
ðTh; r � Th; r�1; zXh

r�1;X
h
r
Þg1�dh; r
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in which dh; r is equal to 1 if the transition r is observed for the individual h, and 0 if cen-
sored.

Our purpose was to find the best model, based only on interesting parameters. With this objective,
we used the LRS as follows:

LRS ¼ �2ðln ðL0Þ � ln ðL1ÞÞ? c2
p ddl

in which L1 represents the Likelihood of the model based on k þ p parameters and L0 the Likelihood
of the model based on k parameters.

2.5 Modeling strategy

Stratified modeling – One model for each modality of covariates was calculated. We could then identi-
fy, by looking at the distance between hazard functions, whether a covariate seemed to affect a transi-
tion and whether the assumption of risk proportionality was respected.

Univariate modeling – After this first stage, we calculated one model for each previously selected
covariate. We still supposed generalized Weibull distributions. Models were said to be univariate,
because only one factor was taken into account,even if it could influence a few transitions. At this
stage, we could test the significance of regression parameters (p � 0:05). This model selection is
rather strict but necessary. Indeed, because the effect of the factors is specific to each transition and
the number of covariables is thus large, this restriction is essential. This constraint is all the more
significant as the number of covariables in such a semi-Markovian model must remain acceptable.

Multivariate modeling – All the previously selected covariates were included in the model. The
vector of covariates were transition-specific. By a descending procedure, each coefficient with a p-value
>0:05 was removed from the model.

Final modeling – This last step consisted of evaluating whether all transitions corresponded to gen-
eralized Weibull distributions. So we tested, still using LRS, whether parameters qij were equal to 1
and then, whether parameters nij were equal to 1. This was the final transition-specific model. Mathe-
matical computing was carried out using R software version 1.9.1. We used the quasi-Newtonian algo-
rithm to maximize Likelihood and calculate the Hessian matrix.

3 Application to HIV Data

3.1 Data and model descriptions

In this section, we applied semi-Markov modeling to data from a prospective study of HIV disease.
The present application is interesting because the HIV disease progression is complex, without a con-
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Figure 1 Four-state semi-Markov model.
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stant hazard function (Joly and Commenges, 1999). The database is constituted of HIV infected pa-
tients, followed up in the Hospital of Nice, France (NADIS database). We limited the sample to
observations collected since 1996 and to individuals over 18 years old. The break point was fixed at
April 30-th 2004. The chronological time of follow-up was calculated from the first biological analy-
sis. Our sample was therefore constituted of 1244 persons, representing a total of 4804 observations.
Men represent about 60% of individuals and 32% of transitions concerns patients over 40 years old.
The means of contamination is equally distributed according to homosexuality, heterosexuality, drug
addiction and accident.

Two markers are important in qualifying gravity level of disease: viral load (VL) and concentration
of CD4 lymphocytes (CD4). CV represents the activity of virus, while CD4 identifies the immunologi-
cal capability. Clinicians define four states of the disease and ten transitions from these two markers.
We thus considered the process characterized by Figure 1. Table 1 describes the frequencies of transi-
tions. States 2 and 3 seem to be the more transitive states, regarding the number of observed transi-
tions. On average, a patient is seen every 2.5 months, the median is 2.3 months. Figure 2 shows this
distribution of visits. However, a patient changes state every 10.6 months, the median is 5.9 months.
Thus, certain visits correspond to a transition, but not all. Indeed, some medical appointments are only
controls, which are planned in advance. During these controls, there are few chances to observe a
transition. On the other hand, for unplanned consultations, when the state of the patient is deteriorates
for example, it is logical to think that a transition is probably observed. By this method of follow-up,
the clinicians suppose they can identify the transitions quite easily.

The purpose is to analyze the progression of HIV disease using this four-state semi-Markov model,
according to the eight following factors: gender (women ¼ 1; men ¼ 0), age (1 ¼ over 40 years old;
0 ¼ otherwise), hepatitis B coinfection (1 ¼ yes; 0 ¼ no), hepatitis C coinfection (1 ¼ yes; 0 ¼ no)
and the means of contamination which could be heterosexual (1 ¼ yes; 0 ¼ no), homosexual (1 ¼ yes;
0 ¼ no), by drug addiction (1 ¼ yes; 0 ¼ no), or by some other accidental way (1 ¼ yes; 0 ¼ no).

3.2 Results

According to stratified and univariate strategies, 11 factors out of 80 possible (8 covariates � 10
transitions), were selected. Finally, the multivariate model uses the 9 regression parameters given in

Biometrical Journal 47 (2005) 6 5

Table 1 Frequency of the transitions observed.

Transition Effective Percentage Median1

1! censoring 31 0.6% 0.44
1! 2 282 5.9% 0.34
1! 3 58 1.2% 0.39
1! 4 174 3.6% 0.34
2! 1 152 3.2% 0.29
2! censoring 605 12.6% 0.48
2! 3 994 20.7% 0.51
3! 2 1340 27.9% 0.48
3! censoring 231 4.8% 0.73
3! 4 212 4.4% 0.41
4! 1 283 5.9% 0.42
4! 2 109 2.3% 0.36
4! 3 268 5.6% 0.30
4! censoring 65 1.4% 1.56

1 Median of waiting times (in years).
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Table 2. We obtain a maximized Likelihood of �5704, corresponding to an AIC1 at 11498. Women
tend to move quickly from state 1 to state 3. More precisely, they are 1.7 times more likely to
leave state 1 than men, given that they move to state 3. However, this information concerns only
the distribution of waiting times and must be introduced in the hazard function of the semi-Markov
process to establish the effect of a covariate. Likewise, being over 40, being coinfected with hepati-
tis C or contaminated by drug addiction, seem to accelerate the transition 2! 1. Conversely, pa-
tients infected by homosexual relation, are 1.7 times likelier to leave state 2, given that state 1
follows. Lastly, an accidental means of contamination, heterosexuality, drug addiction or the fact of
being a woman constitute respectively protective factors against transitions 2! 3, 3! 2, 4! 1
and 3! 4.

Without conditioning on the following state, Figure 3 presents examples of hazard functions of the
semi-Markov process. Let us note that the transition-specific effect of a covariate is reflected on all
transitions leaving from the same initial state, as explained by (5).

This application also involves the relevance of a inverse U shape concerning the hazard function.
All the transitions correspond to this shape. Shortly after entering into a state, the risk of transition is
high and increases. This observation corresponds to a clinical reality: a patient cannot move for an
infinitesimal time, but his recent transition indicates high instability. However, if he stays for some
time in this new state, his stability is reflected by a decrease in the hazard function.

If we follow the same strategy of modeling but using simple Weibull distribution, we obtain a
maximized likelihood of �6127, corresponding to an AIC at 12307. This criterion is larger than the
one obtained with a generalized Weibull distribution. Vectors of covariates also depend on this
choice.
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Figure 2 Distribution of time between two consecutive visits.

1 The minimization of the Akaike Information Criterion makes it possible to select non-nested models. AIC ¼ �2� Log ðLÞ þ
2� Number of parameters:
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4 Concluding Remarks

The results of our application show that homogeneous Markov models, with an exponential distribu-
tion of waiting times, are not adapted to the analysis of HIV dynamics, defined by CD4 and VL
levels. The Weibull distribution also appears to be unsuitable compared with the generalized Weibull
one, fitting an inverse U shape for the hazard function. Therefore, the use of this semi-Markov model
seems to be more realistic for studying this type of biological or clinical process. This inverse U
shape is perhaps due the arbitrary categorization of the states by two continuous variables. This im-
plies for example that, after staying for some time in a certain state, we may expect a period with
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Table 2 Regression parameters bij of the final multivariate model.

Covariate Transition Parameter Relative Risk1 Standard Deviation

Gender 1! 3 0.58 1.17 0.33
Age 2! 1 0.65 1.91 0.19
Hepatitis 2! 1 0.85 2.33 0.22
Homosexuality 2! 1 �0.55 0.58 0.28
Drug addiction 2! 1 0.44 1.56 0.22
Accidental infection 2! 3 �0.19 0.83 0.09
Heterosexuality 3! 2 �0.13 0.88 0.06
Gender 3! 4 �0.43 0.65 0.19
Drug addiction 4! 1 �0.28 0.76 0.13

1 Relative Risk is deduced from (10): RR ¼ exp ðbÞ.

Figure 3 Hazard function of the semi-Markov process from the
state 1 (CD4 < 400 cp �ml�1 and CV < 200 mm�2).
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frequent switches between two states as a consequence of some randomfluctuation of the continuous
variables, until the new state is finally reached for a longer time. This choice of distribution is also
important because the covariates influencing transitions depend on it.

The results also measure the interest of a transition-specific model, enabling us to remove unimpor-
tant parameters and take into account many more different factors. The better adjustment, obtained
with this method, is very useful for modeling the confusion or the interaction bias.

A few ways could extend the semi-Markov model presented in the paper. The main methodological
issue consists of finding the right waiting time distribution. The models used in the first steps of our
modeling strategy estimate all the parameters of the generalized Weibull distribution. This approach
requires a large sample size of the study. In other applications, this point may be limiting. Therefore,
a semi-parametric methodology, such as the one defined by Dabrowska et al. (1994) or Joly and
Commenges (1999), could be an alternative approach, even if the hazard functions are not modeled.
Another natural extension of the analysis would be to develop the non-homogeneity of the Markov
chain contained in the semi-Markov process. This non-homogeneity would be based on chronological
and waiting times (Papadopoulou and Vassiliou, 1999).

Lastly, the semi-Markovian property, according to which the evolution of the process is conditioned
by the present state and the time spent in this state, is a strong assumption. The use of an embedded
Markov chain, with an order higher than one, could constitute an extension.
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Table 3 Transition probabilities of the Markov chain of
the final multivariate model.

Transition Probability Standard Deviation

1! 2 0.55 0.02
1! 3 0.11 0.01
2! 1 0.20 0.02
3! 2 0.86 0.01
4! 1 0.44 0.02
4! 2 0.16 0.01

Table 4 Parameters of waiting time distribution of the final multivariate model.

Transition nij sij qij

Coeff. SD Coeff. SD Coeff. SD

1! 2 2.85 0.43 0.13 0.01 5.46 1.09
1! 3 2.86 0.65 0.23 0.05 3.61 1.25
1! 4 2.67 0.39 0.15 0.02 4.59 0.89
2! 1 3.04 0.49 0.12 0.01 26.23 6.62
2! 3 2.61 0.20 0.18 0.01 7.20 0.82
3! 2 2.75 0.21 0.15 0.01 6.28 0.63
3! 4 2.19 0.36 0.13 0.02 5.58 1.25
4! 1 3.50 0.60 0.11 0.01 8.49 1.72
4! 2 3.38 0.85 0.15 0.02 6.32 2.11
4! 3 2.90 0.41 0.10 0.01 6.23 1.13
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